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Abstract. We write down the Lagrangian of a ‘supersymmetric Weinberg-Salam model’ 
which is invariant under the action of the gauge group SU(2/1) and under rotations in a 
six-dimensional graded space. We show that such a Lagrangian does not, in fact, naturally 
give rise to the Weinberg-Salam model. 

1. Introduction 

The Weinberg-Salam model is the currently accepted model of weak and electromag- 
netic interactions. Conventional attempts to unify it have led to theories containing 
large numbers of (so far) unobserved particles. Recently Ne’eman (1979), Fairlie (1979 
a, b), Dondi and Jarvis (1979a), Squires (1979), Taylor (1979a, b) and Pickup and 
Taylor (1979) have made ‘unconventional’ attempts using supersymmetry ; we discuss 
first the motivation behind these schemes, and then the associated problems. 

The gauge group used is SU(2/1); this contains the SU(2) x U(1) of the Weinberg- 
Salam model. However, it also contains a doublet and its conjugate and thus, it was 
hoped, the Higgs field could be naturally incorporated. The fundamental 3 x 3  
representation of the gauge field may be written 

Now, the Weinberg-Salam model contains an arbitrary parameter Ow, the Weinberg 
angle. Since SU(2/1) models combine the SU(2) and U(1) parts, the Weinberg angle is 
not a free parameter of these theories, but in fact has been determined to be 30” (Fairlie 
1979a, b, Ne’eman 1979), in good agreement with recent experiments. Moreover, in 
the Weinberg-Salam model the left-handed lepton and its neutrino must be assigned to 
a doublet, and the right-handed lepton to a singlet. In SU(2/1) models, however, they 
may all be assigned to the fundamental triplet, which contains an SU(2) doublet and a 
singlet. This arrangement allows the natural choice of charge matrix (Fairlie 1979a, b). 
Furthermore there is a four-dimensional representation of SU(2/ 1) which contains an 
SU(2) doublet and two singlets; this seems a natural way to introduce left- and 
right-handed quarks. 

So far all seems well, but in fact there are problems even with the incorporation of 
the Higgs field. Since SU(2/1) is a Lie supergroup, some of its parameters (those other 
than the parameters of the SU(2) and U(1) subgroups) are elements of a Grassman 
algebra, i.e. they anticommute with each other. This means that the doublet associated 
with the odd generators is an anticommuting field, and consequently has the wrong 
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spin-statistics. This may be countered by assigning the doublet to a completely separate 
multiplet (Dondi and Jarvis 1979b), but to incorporate the Higgs particle into the gauge 
field Dondi and Jarvis (1979a) defined their theory over an extended space-time: to the 
usual four-dimensional Minkowski space it is necessary to add two extra fermionic 
(anticommuting) dimensions so that the last two components of the Higgs field are 
commuting. However, this also means that the last two components of all other fields, 
in addition to the first four components of the Higgs field, will be anticommuting. 

In this paper we shall write down a ‘supersymmetric Weinberg-Salam model 
Lagrangian’ (without fermions). By this, we mean a Lagrangian that is a scalar with 
respect to the six-dimensional space-time supersymmetry mentioned above and which 
is invariant under the action of SU(2/1). It is the hope of many people that the 
Weinberg-Salam model will emerge naturally from such a Lagrangian; in fact, we shall 
show that it does not do so. 

This paper is in three parts. In the first part we review SU(2/1) and its represen- 
tations. In particular we shall discuss the metric of the group which, unlike the metric of 
the usual gauge groups, is not a simple delta function. We proceed to show how to write 
down terms which are invariant under the action of the group, in preparation for the 
construction of the gauge-invariant Lagrangian. 

In the second part, we will deal with space-time transformations. We shall consider 
rotations in the full six-dimensional space. Since the Lagrangian must be a scalar we 
show how to form rotational invariants from six-dimensional vectors and second-rank 
tensors. 

In the last part, we shall write down our basic fully invariant Lagrangian. We will 
show that the U(1)-invariant term necessarily has the opposite sign to the SU(2)- 
invariant part, in contrast to the Weinberg-Salam model and, further, that fields with 
the wrong spin-statistics are still present. Moreover, the Higgs field does not appear in 
the straightforward way that one might have hoped. We discuss the spatial dependence 
of the fields, but point out that freedom of choice in this matter does not seem to help. 
Finally we show that the measures necessary to extract something like the Weinberg- 
Salam Lagrangian are so drastic as to render this approach pointless. 

2. Review of SU(2/1) and its representations 

2.1. The Lie superalgebra 

We write the SU(2/1) algebra as (cf Dondi and Jarvis 1979a) 

where 

m = 0, 1 , 2 , 3  
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i, j ,  k = 1 , 2 , 3  

a,  b = 1, 2 

c m  = ((+o, 0 )  

umRm -c+oRo + c+iRi. 

This is a &-graded algebra, i.e. its generators may be divided into two classes, even 
and odd. In this paper we label these by R and Q, respectively. It can be seen that the 
R’s generate SU(2) xU(1). 

In the notation of Ne’eman (1979) a Lie superalgebra can be written 

[ A A ,  A B }  = C&AC (2) 

where 

[ , ] if A A ,  A B  both ‘even’ 
[ , } = [ , ] if one ‘even’, one ‘odd’ i { , } if both ‘odd’. 

For SU(2/1) the labels A,  B, C, . . . , etc, run over eight values, with the set 

AA = Ro, Ri, Qa, 6,. 
The algebra (1) may be represented by ordinary 3 x 3 matrices: 

(3) 

The adjoint representation is defined by 

( A A ) ; =  c!L (4) 
where B and C are the row and column labels, respectively. (One can also use 
( A A ) ; =  -(-) C A B  which gives the same metric.) 

It can be shown that this is indeed a representation by using the ‘graded Jacobi 
identity’ (see, for example, Corwin et a1 1975): 

A B  C 

[ A A ,  [ A B ,  hcII=  [ [ A A ,  A B } ,  A ~ I +  ( - I A B [ ~ B ,  [ A A ,  ~ c ) )  ( 5 )  
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+1 if AA, AB both even 
+1 if one even, one odd 
-1 if both odd. 

Substituting the structure constants and using the linear independence of the 

Explicitly, the adjoint representation is 
generators yields (2). 

1 R -- 
2 - 2  

/ I I 1-1 o \  

1 Q,=, 

I \ 0-1 -i 0 1  
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2.2. The group SU(2/1) 

An element of the group may be written in the form 

g = exp[i(OoRo+ eiRi + 8,QQ + 6Q8a)]. (7) 

The parameters 8 are graded, i.e. the set (eo, ei) are (real) numbers and the set 
(ea, gQ) are elements of a Grassman algebra: 

{ e a ,  8 b } = { g a ,  e b } = ( e Q ,  e b } = o .  

Notice that in the fundamental representation (3) the R’s  are Hermitian and the Q’s 
are the Hermitian conjugates of the 6’s. This is necessary for SU(2/1) to be unitary in 
its fundamental representation. Infinitesimally, 

g + g =  1+i(BoRO-8~R,f  +OiRt-8TR: +8 ,Q, -Q~~a+6 ,~a -8QQ, ) .  

vanish since Q: = 6, in the fundamental representation. 

- -+  

Reality and Hermiticity ensure that the first four terms vanish, and the last four 

A group element of SU(2/1) can be written in the form 

A I B  
g =  - -+ - -  

( C  I D /  
where the elements of A and D are just numbers, and the elements of B and C are 
anticommuting numbers. Any matrix with this structure will be referred to as ‘correctly 
graded’. It is easily seen that this graded structure is preserved under multiplication. 

The graded trace or supertrace is defined by 

str(g) = tr(A) - tr(D). (9) 

By multiplying group elements component by component we see that the supertrace 
of group elements is cyclic: 

str(gg’) = str(g’g). (10) 

Note that this is not true of the generators of the group since they are not correctly 
graded matrices: 

Str(hAhB) = (-)AB Str(hghA) (1 1) 
(Str(C2BhC) = o because the generators are supertraceless). 

2.3. The metric of SU(2/1) 

The Killing metric is defined by 

gAB = str((adj AA)(adj AB))  (12) 
and may be used to raise and lower indices in the usual way. If we define A B  implicitly 
by 

B A A  = gABA 

and gAB by 
A AB A = g  A B  
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then 
BC gACgcB = g gCA = 8;. 

We point out that 

gAB = str((adj hB)(adj A A ) ) .  

Explicitly 

1 
1 

1 - -- - -  

The fact that the metric has both symmetric and antisymmetric parts causes some 
trouble-we point out that in general, for any quantities X A ,  

2.4. Invariants under SU(2/I) 

We recall first some features of ordinary Yang-Mills theories. 
Consider a field 4 which transforms like 

4 -+g+ (14) 

under a local gauge transformation. (We do not distinguish between an element of a 
group and its representation.) Now since g = g(x), the ordinary derivative of q5 will not 
transform in the same way. To overcome this, we define the covariant derivative 

Dw = 8” +ieAET“ (15) 

where the T“ are the generators of the (Lie) gauge group, and AgT” =A’(x) is the 
gauge field, transforming like 

i 
A’ -+ gAwg-’  +;(d’g)g-’. (16) 

We then have 

D’4 + gDwq5. 

If we define F:” by 

1 
Fg”T”4 =_[Dw, D”]4 

ie 

= ( P A ”  -d”A’ +ie[Aw, A”])q5 
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then we see immediately that under a gauge transformation 

FZ"Ta + gFZ"Tag-I. 

Now since 

tr(TaTb)ccSab 

we have (ignoring the proportionality constant) 

F'",F,,, = FFua6abF,,,b 

= F,", tr( TaTb)F,,,b 

= tr(FI*YaTaF,ybTb). 

Thus under a gauge transformation 

F @,,,F, -+ tr( g F  Ir "a T ,g-l gFNYb T 'g- '1 
= F'"",F,,, 

by the cyclic property of the trace. 
Thus F'"",F,,,, is an invariant of Yang-Mills theories. It will be the object of this 

section to determine the corresponding invariant for SU(2/ 1). 
In the final section of this paper, when we come to evaluate the gauge field 

commutators (and anticommutators), we shall discover that, in order to stay within the 
algebra, all the 'odd' components of vectors, tensors, fields, etc, must anticommute with 
the odd generators (as one would expect from their grading). This means that care will 
be necessary when summing the components of a field over the generators of the group. 
We shall define 

FAhA = FORo +&Ri + FaQa + b,Fa 
= F ~ R ~ + F ' R ' + ~ ~ Q " + Q ~ F " .  

Then the SU(2/1) analogue of (18) (in four dimensions) is defined to be 

1 
FcYh~4 =AD, ,  Dv14 ie 

where 
A D, = d, +ieA, AA. 

Consequently we know that (ignoring space-time indices) 

F A h ~  -+ gFAAag-'. 

Now consider (taking the generators to be in the adjoint representation) 

str(FAAAFBAB) 

=str(FoRoFoRo) +str(FiR,F,Rj) +Str(FaQabbFb) +Str(OaFaFbQb) 

= -F: + F: - FaFa +FaF,. (23) 

We would expect to be able to commute AB through FB in order to write this 
analogously to Fl'',6abF,,b, and if we are careful with signs and definitions we can 
indeed do so. But when we extend the theory to six dimensions the space-time indices 
on F (which we have so far ignored) will be graded, and this will make things more 
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complicated. In view of this it seems simplest always to write invariants in terms of 
supertraces. 

The graded space-time indices on F also mean that, for some values of these indices, 
FAAA will be a wrongly graded matrix (i.e. it will be even where a correctly graded 
matrix is odd, and vice versa). However, the space-time metric is box-diagonal (see 8 3) 
and if we use this to sum over the space-time indices then this will ensure that 
FAhAFBhB is correctly graded, since the product of two wrongly graded matrices is 
correctly graded. 

It follows that under a gauge transformation 

Str(FAhAFBhB) + Str(gFAAAFBABg-') 

= str(FAhAFBhB) 

irrespective of any suppressed indices on F, and thus this is the desired SU(2/1) 
invariant. 

3. Space-time transformations 

As we pointed out in the introduction, Dondi and Jarvis (1979a) have set up super- 
symmetric Weinberg-Salam models on graded manifolds-i.e. manifolds some of 
whose coordinates anticommute-so as to provide a Higgs field with the correct 
spin-statistics. W-e stress that this technique not only does not remove the Higgs field 
with the wrong spin-statistics, but actually introduces wrong spin-statistic components 
into ordinary fields. 

We shall treat a six-dimensional space. The relevant metric is 

We use 

p, U ,  p, etc = 0 ,  1,2 ,  3 
cy, p, y, etc = 5 , 6 .  P ,  9, r, s, etc = 

Since g,, is neither symmetric nor antisymmetric we shall have exactly the same 

Define 
problems as with gAB. 

and tp by 
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This gives 

gpqg,, = sp = g,,g". 

gpq = &P gpq = s; g y ,  = (-)pa;. 

We obtain (numerically) 

We require our Lagrangian to transform as a scalar under OSp(3,1/2), which is the 
full group of rotations in this six-dimensional space. Define the transformation of z p  by 

z :  = apqzq. (25) 
Then multiplying by g r p  we have 

grpzL = z t r  = grpapqgqszS .  

Hence, if we define 
2'' = bP,Zq 

then 

bP, = gPralsgsq 
- PS - a gsq. 

As a check we take the identity transformation on z,, when 

u p q  = 8,' = 8: 

and then 

bPq = gPrGS,gsq 

= 8: also. 

For an infinitesimal transformation we define 

a,' = 8,' + Aw,'. 

This gives 

bP, = 6; +AwPrgr,. 

Then 

z " z  L = b pqz 'aPrz,  

= z ' z P  + Aw "gSqz Lzr + 8 : ~ '  Awprzr. 

For z p z p  to be invariant under rotations we require 

h w P ' ~ , z ,  +zPAw,'zq = 0.  (29) 

Expanding the summations into sums over odd and even coordinates, and remembering 
the grading of z and Aw, and the fact that Awfimz,  = -Awfi' ,zn we obtain the conditions 

Awfi'" = -Amy@ (as expected) 

Awfi"" = - Aw 

Aw = Am 
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It is easily seen that zpzp is not invariant under these conditions. We therefore 
conclude that the invariant scalar product is 

zpzp = x'*x, + 5'e2 - t2g 
= zpgpqzq = zpgqpzq. 

For completeness we derive the algebra of OSp(3, 1/2), We write A m p q  in terms of 
the parameters and generators of the group 

Awpq = A ~ l L Y ( J , y ) , " + A ~ l L a ( I T ~ u ) , " + A ~ " ~ ( ~ : , p ) , " .  

The parameters Adpq have the same grading and symmetry as A.wpq; there are 
seventeen of them since the independent generators consist of six J ,  eight 11 and three S .  

To determine the symmetry of the generators as matrices, we need to know the 
relation between Awp4 and AwqP. From 

Awpq  = --( - ) p q A ~ q p  
and 

Amyp = gqrgpsAwrS 
we obtain 

(31) Awpq  = -(-) pq g qr gpsAwrs. 

Substituting particular values of p ,  q, r and s we obtain the following relations: 

= hoto 

Aw;' = -Awj' 

Awe" = -g"'Awpo 

Awi" = g"pAwpi 

A w ~ ~  = - A w ~ ~  

(32) 
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3.1. Gauge theories on graded manifolds 

We have already discussed the implications of using SU(2/ 1) as a gauge group, and have 
seen that Str(FAAAFBhB) is invariant under the action of the group. We complete the 
discussion by extending our theory to six graded dimensions. 

The covariant derivative is 

D, = 8, + ieAtAA 

where 

AtAA = A&, 0 
and transforms in the usual way. 

Using the fact that 8, is a 'graded-Leibnitz' operator, i.e. that 

ap(zqzq) = (apzq)z, + (-)""z"(a,z,) 

it is then easily shown that 

D R  + gD,d 

4 + g4* 

if 

We define the second-rank tensor by 

[D,, D,} = ieFAAA 

FtqAA = &A, - (-)"aqAp +ie[A,, A,}. 

and then 

We must now form a term bilinear in F which is invariant under both SU(2/1) and 
OSp(3,1/2); the analogue of the FeLYaFeVa term in Yang-Mills theories. In fact, the 
required term is Str(FPqAhAF$iB): that this is a scalar under OSp(3, 1/2) seems 
plausible since zpzqzqzp obviously is. We now outline the proof. 

Str(FPqAhAF;d B ) 

1 
e 

= -7 str([DP, D4}[Dq, D,}) 

(35) 
1 

+ -Tstr([bPrDr, b4,D'}[aq'D, a,"DU}). 
e 

The delta functions in the transformations a and b just give back the original term, 
and to first order we are left with 

1 
e 

-T str(([AwPSg,,D', D4}+[DP, Awqrg,DS})[D,, D,} 

+IDP, D'}([Awq'Dr, Dp}+[Dq, AwpuDu}))- (36) 

After some algebra it can be shown that the two sets of terms in the supertrace cancel 
pair-wise, and thus str(FPqAAAF$,AB) is the relevant invariant. 
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4. The Lagrangian 

As a basic Lagrangian, without fermions, we take 

2 = a str(FPqAAAF,",AB) 
-;iF @ v m ~ + y m  - ;F@'""F,,, + :F"~"F,~, - +F@'",F,,, 

(37) - F @ " F  +l- 
a gaa 

Let us consider the first term. Since it is obviously invariant under SU(2) x U(1) one 
might hope that at least this term reproduced part of the Weinberg-Salam Lagrangian. 
But (from (13)) 

(38) - $FC""mF,,, = iFWvoF0 - J W L Y - F p Y .  L 

In the Weinberg-Salam model these two terms have the same sign. The sign 
difference here is not trivial-it arises ultimately from the fact that the generators of 
SU(2/1) must be supertraceless. 

We must also consider the other terms in the Lagrangian. In order to see what is 
happening with the fields we evaluate the gauge field (anti)commutators. It is here that 
we have to assume that the odd-field components anticommute with the odd generators 
if we are to stay within the algebra. We obtain 

[Ap, A"]  = $(AgAi+AEAi)(um))Rm +iAYAyclJkRk +i(A$A," -AgAi)(ao)tQb 

+$(A:Ay - AYA:)(o,)b,Qb + $(A:Af; - A ~ A : ) ( c ~ ) : Q ~  

+ i(AzA ," - A YA:)(aT ) : 6 b  

[A@, A*]  = -;(ACA;+AEA:)(a"):R, +iA?APq,kRk -i(AgA,"+A&4:)(a0):Qb 

-;(A:A: +AYA:)(a,):Qb -i(A:A: +A:Ag)((+i 

- i(Ag.4: + A?A;)((+: ) : O b  

{A*, A'} = -$(AZA~+A:A~)(CT"):R,  +iAffAfc,,kRk 

- &(A :A + A :A f ) (VO) Qb - ;(A :A f + A PA ! ) (al ) :Qb 

-:(A:Ag + A:Af)(a;;'):Ob -+(AzA? +A:Af ) (v?  ):6b 
It is obvious that the theory is inundated with wrong spin-statistic fields. They arise 

because we have used a graded Lie gauge group and because the theory is formulated on 
a graded manifold. In a full quantum-mechanical treatment it is not possible to set the 
unwanted field components equal to zero. 

One might hope to dispose of the wrong spin-statistic fields by choosing some 
particular spatial dependence and integrating over the anticommuting dimensions, 
using 

da  = O  I 
I a d a = l  

where a is an element of a Grassman algebra. This would break the OSp(3,1/2) 
invariance down to the required Lorentz invariance. However, it would be necessary to 
dispose of the components of the W and B fields associated with the odd generators of 



Supersymmetric Weinberg-Salam models 1407 

SU(2/1) and the components of the Higgs field associated with the even generators, and 
we have not been able to find a spatial dependence to do this. 

Finally, we point out that it is possible to extract something like the Weinberg- 
Salam model if we take the trace 

By restricting the theory to four dimensions and rescaling the Abelian part we can 
indeed reproduce the first two terms of the Weinberg-Salam model (although the Higgs 
field has disappeared). But this is not a supersymmetric model at all; by taking the trace 
we are breaking the SU(2/ 1) invariance down to SU(2) x U(1), and if we then restrict 
the theory to four dimensions we are doing no more than Weinberg did in the first place. 

To conclude then-in this paper we have established a consistent formalism and 
have written down the full SU(2/1) and OSp(3,1/2) invariant Lagrangian. This makes 
clear the difficulties involved in attempts to establish a realistic physical model. Indeed 
the difficulties seem such as to make it unlikely that a realistic physical model will easily 
be established. 
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